
Mobile
Application

Hacking

BSides Vancouver

2019

Wesley Wineberg

Hack like it’s
1999

(The past is always better than it really was)

Refresher on the year 1999....

This is 4 years old

This is every hacker’s dream

Hacking is mostly trying to do things as cool as it looks in the movies

No explanation required

Hacking Tools From 1999
“Hacking”

Techniques / Vulnerabilities In 1999

• Client Side Validation
• Full client applications

• Web applications!

• Your operating system

• Security By Obscurity
• Binary file formats

• XOR encryption

• Hardcoded credentials, backdoors, etc

• SSL? What SSL?

• “Trusting” Users
• Email viruses

• Instant message viruses

• The invention of the euphemism “social engineering”

Wesley Wineberg
• Back in Vancouver!

• Previously Red Team at Microsoft

• Infosec for more than a decade (almost as long as
the iPhone is old)

• 4th time speaking at BSides Vancouver

About

6

Mobile App
Hacking Goals

If you can measure it you
can manage it

7

Objectives – Less Hacking, More Analyzing

• Usually *not* to break into a phone
• Mobile operating systems mostly make this difficult

• Mobile malware is partially mitigated by the app store model

• Compromise app access or data
• Data on the phone

• Data in transit

• Backend / Vendor Accounts
• Compromising the backend is way more efficient than hacking users

one by one

• App secrets / access tokens

• Test and staging infrastructure

Scope Disclaimer

• There’s lots more to go wrong with mobile apps. The content in this talk is
just a starting point!

OWASP Top 10
OWASP does mobile too!

“Used the
OS wrong” Security by

obscurityWhat is
this, 1999?

Client side
authentication

OWASP Top 10 The 90’s want
their XOR back

“We’ll check
permissions in

the app”

Target this lastOnly a problem
for games Security by

obscurity“No one will
ever know”

Traffic
Interception

So easy even the government could do it!

Useful for discovering:
• Insecure communications

• Client side authentication

• API keys

• Backend API’s

1
2

Intercepting Proxies
“Offline mobile apps are great” – said no one ever

• To capture and analyze traffic from mobile apps we need to intercepting their outgoing requests and the
incoming server responses

• Proxies do this in practice on many networks already – mobile operating systems are designed with this in mind

• “Intercepting Proxies” are specifically designed for analysis functionality

Popular Intercepting Proxies

• Burp Suite Professional (or Community
Edition)
• Most popular and overall best

• ZAP – Zed Attack Proxy
• Long time intercepting proxy tool

• Fiddler
• Popular for normal web debugging

Proxy Setup

Android

• Settings -> Wifi -> Wifi Name -> Manage network
settings

iOS

• Settings -> Wifi -> Wifi Name -> HTTP Proxy

Certificate Authority Setup

Android:

Rename
to .cer
first

iOS:

Browse to http://127.0.0.1 (or your proxy IP)

http://127.0.0.1/

Try it out – Then start hacking - Demo

Sample App – Grouse Mountain iOS Demo

Grouse Mountain’s mobile apps will be
the unlucky demo for network traffic

Apologies for picking on them!

Sample App – Grouse Mountain iOS Demo

• Backend API’s

• Third party services

• Types of data being sent

• No need for advanced “hacks”, just look at the traffic!

Demo continues (hopefully)

Sample App – Grouse Mountain Android Demo

• No HTTPS for any authentication requests

• HTTPS is used for other less sensitive things

• iOS “Grouse Grind” App is the same

• Typically of *many* mobile applications, even
in 2019

Bypass Certificate Pinning: iOS Kill Switch

• iOS Kill Switch 2
• Originally from iSecPartners

• https://github.com/nabla-c0d3/ssl-kill-switch2

• Bypasses almost all certificate pinning on iOS

Reverse
Engineering

Dynamic and Static Analysis

Useful for discovering:
• Hardcoded secrets

• Client side authentication

• API keys

• Test and debug functionalities

• Dev / test / staging environment details

• Backdoor mechanisms

• Missing security options

Mobile Application Reverse Engineering

Android

• Runs a Linux like OS

• Mostly ARM, now x86 too

• Java mostly

• Applications decompile nicely

• Java is an compiled to an intermediate form, not to raw
machine code

• Compiled Java bytecode contains (by default at least) a large
amount of metadata

• End result is easy reverse engineering

iOS

• Runs a BSD like OS

• ARM processors (older was 32bit, newer is 64)

• Objective C mostly

• Applications do not easily decompile

• Application binaries contain raw machine code

• Disassembly to assembly language

• Possible decompilation back to C

• Limited metadata

• End result is reverse engineering is not super easy

Android Apps

• All normal Android apps are distributed through the Google Play
Store
• There’s also FireOS with the Amazon app store

• Or developer / non-public apps

• No direct way to download to PC
• Various ways to interface with the play store API’s, but these are

always changing or being blocked

• Download to device -> Copy to PC
• The best option!

• Can use an emulator if really necessary

How to actually get a copy of an app

Android Apps

1. Enable USB Debugging
a. https://developer.android.com/studio/debug/dev-options

2. adb shell pm list packages – this lists installed apps with their full names

3. adb shell pm path your-package-name – this prints the path to the “apk” file

4. adb pull full/directory/of/the.apk – this downloads the “apk” to your PC

How to actually get a copy of an app

Android SDK Required – It includes the adb application

From Dalvik To Java

• Android Uses “Dalvik” (technically “ART” these days) not a normal “JVM”
• All this means is the bytecode is different

• Dalvik bytecode is stored in “dex” files instead of “class” files

• Disassembled “Dalvik” bytecode is known as “Smali” or “Baksmali”
• You can also just call it disassembled Dalvik if you like

• Dalvik bytecode is almost the same as Java bytecode – translation tools exist

From Dalvik To Java

• Dex2Jar
• d2j-dex2jar.bat <yourapp.apk>

• Will output a “jar” file

• apktool
• java –jar apktool_2.3.4.jar d <yourappname.apk>

• Will output “smali” files along with “resource” files

Decompiling Java – Almost As Good As Source

• JD Core / JD Gui
• http://java-decompiler.github.io/

• Application obfuscation is
fairly common on Android

• Most common obfuscation
results in variable and
function names like a, aa,
aa1, aa2, etc

http://java-decompiler.github.io/

Decompiling Java – Demo

Android Resource Files

APK’s contain more than executables:
• resources.arsc

• AndroidManifest.xml

• /res/ folder

• /lib/

• App specific files (often including configuration files)

Use apktool to extract resources.arsc and AndroidManifest.xml

Android Resource Files

Resources.arsc will extract to /res/values/<types>

Android App Memory Dump

• If an app is heavily obfuscated, just do a memory dump!
• adb shell ps

• adb shell am dumpheap <procid> /data/local/tmp/dumpheap.hprof

• adb pull /data/local/tmp/dumpheap.hprof

• If an app isn’t “debuggable”, rewrite manifest or use app virtualization

iOS Apps

• All normal iOS apps are distributed through the Apple App Store
• Or developer / non-public apps

• PC downloads are encrypted
• Apple’s FairPlay DRM protects executables

• Download to PC -> Copy to device -> Unprotect -> Copy to PC
• Tools change across iOS versions

• Once setup process is fairly painless

• Works best on iOS 10

How to actually get a copy of an app

Jailbreak Required™

By The Way...

If you are unfamiliar with Jailbreaking on iOS:

1. Get your credit card

2. Type in “Jailbroken iPhone” on ebay.com

iOS Apps

1. Download via iTunes on your PC

2. Sync to your iPhone

3. SSH into your iPhone

4. rc -m - this launches the menu for rasticrac

5. Clutch –d <id> - for older phones

6. bfinject, etc for iOS 11

7. SFTP to your phone and copy the outputted “ipa”
package to your PC

How to actually get a copy of an app

Rasticrac is available in iPhoneCake and AppAddict repositories. Or as standalone.
Clutch is available from AppAddict repository or as standalone

Disassembling iOS Applications

• Hopper

• IDA Pro

• Others… Binary Ninja, Ghidra, etc

Disassembling iOS Applications

Possible to recover:

• Program structure

• Function names

• Some variable names

Does not recover:

• High level instructions

Applications are rarely obfuscated

Disassembling iOS Applications

Disassembling iOS Applications

Analyzing iOS Applications

• Analyzing disassembly is (somewhat) hard

• Just use strings and grep instead!

iOS Resource Files

iOS Resource Files

IPA’s contain more than executables:
• plist files

• Info.plist

• Storyboard folders – not useful

• /frameworks/ (this is actually just more executables)

• App specific files (often including configuration files)

Use plutil to extract plist files

iOS Resource Files

To convert a plist to XML:
• plutil –convert xml1 filename.plist

For example:

iOS App Memory Dump

• If an app is heavily obfuscated, just do a memory dump!
• memscan -p 8650 -d -o rbos.mem

• or

• python fridump.py –U appnamehere

Real World Examples

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

20YY 20YY 20YY 20YY 20YY

Gross Revenue

$6,750 $33,750

$135,000

$270,000

Company Sales

$0

$50,000

$100,000

$150,000

$200,000

$250,000

$300,000

20YY 20YY 20YY 20YY 20YY

Revenue Over Time

4
6

What does this look like for real world apps?

Real World Examples – BSides Sponsors!

Real World Examples – BSides Sponsors!

Fortinet – Too Many Apps

Fortinet – The CISO Collection

• Resources files:
• Google API keys – work for some services

Fortinet – The CISO Collection

• Auth Method – Where does the key come from?

Fortinet – The CISO Collection

• Auth Method – Resource Files Javascript:

Fortinet – The CISO Collection

• Auth Method – SHA256(Magic + Rand)

Fortinet – FortiClient VPN

• Missing HTTPS on URL’s
• Not for auth, but for the main menu link

Fortinet – FortiClient

• Hardcoded Encryption Key
• The purpose of this key was not determined or tested

Fortinet – FortiClient

Fortinet – FortiFone

• Hardcoded Database Encryption Secret

F5 Networks – F5 Access

• Hardcoded Encryption Key
• The purpose of this key was not determined or tested

F5 Networks – F5 Access

• Resource Files – “Site Database”
• I can only assume this is supposed to be public 

SFU – SFU Snap

• Hidden API Keys?
• Network traffic showed various API keys (internal, Google Maps, etc)

SFU – SFU Snap

• Keys moved into compiled
“library” file

SFU – SFU Snap

• Keys are Base64 encoded

Proofpoint – Proofpoint Archive

• Not a vuln in any way but...

• Windows DLL’s on iOS and Android,
who could’ve seen that coming?!

OneLogin – OneLogin Mobile

• REDACTED, sorry

RSA

• Various unrestricted Google API keys

RSA – RSA Conference App

• Reference to test environment (not a vuln necessarily)

So Many Apps, So Little Time

• Mobile apps don’t need to be mystery

• Open the app store, take a look at some more!

Thank You

Wesley Wineberg

wesley@exfiltrated.com
www.exfiltrated.com/research.php

Image Credits

http://voxvalley.com/images/lawful-interception.png
https://blog.cloudflare.com/content/images/2017/08/Artboard-9.png
https://cdn-images-1.medium.com/max/800/0*kLiTfW5SWQSoySkP.
https://res.cloudinary.com/peerlyst/image/upload/c_limit,dpr_auto,f_auto,fl_lossy,h_252,q_auto,w_421/v
1/post-attachments/1542793833824_pzaqqh
https://avatars2.githubusercontent.com/u/6716868?s=400&v=4
https://lc-gold-cdn.xitu.io/9fd48dc18360b9e212ab.jpg
https://www.google.com/url?sa=i&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwj8t7-
mz4fhAhVLsFQKHZoRAtMQjRx6BAgBEAU&url=http%3A%2F%2Fwww.commodon.com%2Fthreat%2Fthreat
-sub7.htm&psig=AOvVaw07LJeqE5EyG3_mPNm8SOfi&ust=1552858579112648
http://diysolarpanelsv.com/images/live-clipart-for-android-47.jpg
https://denisbloch.com/wp-content/uploads/2018/01/kristin-simmons-holy-profits-american-excess.jpg

